Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses
نویسندگان
چکیده
We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs) H over infinite, discrete and countable sets V . In this setting we analyze in detail the distributions of the corresponding Dirac point-masses of V . Illustrations include certain models from neural networks: An Extreme Learning Machine (ELM) is a neural networkconfiguration in which a hidden layer of weights are randomly sampled, and where the object is then to compute resulting output. For RKHSs H of functions defined on a prescribed countable infinite discrete set V , we characterize those which contain the Dirac masses δx for all points x in V . Further examples and applications where this question plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to graph-Laplacians where the set V of vertices is then equipped with a resistance metric; and finally (iii) the study of Gaussian free fields.
منابع مشابه
Some Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملFisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملSampling Expansions in Reproducing Kernel Hilbert and Banach Spaces
We investigate the construction of all reproducing kernel Hilbert spaces of functions on a domain Ω ⊂ R that have a countable sampling set Λ ⊂ Ω. We also characterize all the reproducing kernel Hilbert spaces that have a prescribed sampling set. Similar problems are considered for reproducing kernel Banach spaces, but now with respect to Λ as a p-sampling set. Unlike the general p-frames, we pr...
متن کاملOptimal Sampling Points in Reproducing Kernel Hilbert Spaces
The recent developments of basis pursuit and compressed sensing seek to extract information from as few samples as possible. In such applications, since the number of samples is restricted, one should deploy the sampling points wisely. We are motivated to study the optimal distribution of finite sampling points. Formulation under the framework of optimal reconstruction yields a minimization pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 16 شماره
صفحات -
تاریخ انتشار 2015